Aziridination of the Uracil 5,6-Olefinic Bond of 3-N-3',5'-Di-O-tribenzoyl-5-vinyl-2'-deoxyuridine

Rakesh Kumar, Leonard I. Wiebe and Edward E. Knaus*

Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8

Thomas T. Nakashima

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 Received June 17, 1991

Oxidation of N-aminophthalimide with lead tetra-acetate at -50° gives N-acetoxyaminophthalimide (3) which selectively aziridinates the 5,6-double bond present in 3-N-3',5'-di-O-tribenzoyl-5-vinyl-2'-deoxyuridine (1a) to yield 2-[1'42'-deoxy-β-D-ribofuranosyl)]-7-(1-phthalimido)-4-N-3',5'-di-O-tribenzoyl-6-vinyl-2,4,7-triaza-bicyclo[4.1.0]heptan-3,5-dione (5).

J. Heterocyclic Chem., 28, 1467 (1991).

Introduction.

The development of new methods for pyrimidine nucleoside modification is currently of great interest. Thus, the cycloaddition of dibromocarbene to 3-N-3',5'-di-O-tribenzoyl-5-vinyl-2'-deoxyuridine (1a) afforded a mixture of the two diastereomers 5-[(1S)-2,2-dibromocyclopropyl]-(1b) and 5-[(1R)-2,2-dibromocyclopropyl]-3-N-3',5'-di-O-tribenzoyl-2'-deoxyuridine (1c) in a ratio of 1:1 [1]. The 5,6double bond of uracil analogues can undergo a variety of photochemical reactions since photolysis of 6-azido-1,3dimethyluracil with amines gave rise to 6-alkylamino-5amino-1,3-dimethyluracils via an aziridine intermediate 2 [2]. The observation [3] that oxidation of N-aminophthalimide with lead tetra-acetate at low temperature gives Nacetoxyaminophthalimide (3) which aziridinates olefins prompted us to investigate the reaction of 3 with 3-N-3',5'di-O-tribenzoyl-5-vinyl-2'-deoxyuridine (1a) which could add to the 5-vinyl substituent and/or the 5,6-uracil olefinic bond. We now report the synthesis of the novel bicyclic aziridine compound 2-[1'-(2'-deoxy-β-D-ribofuranosyl)]-7-(1-phthalinido)-4-N-3',5'-di-O-tribenzoyl-6-vinyl-2,4,7-triazabicyclo[4.1.0]heptan-3,5-dione (5).

Chemistry.

The reaction of N-acetoxyaminophthalimide (3), prepared in situ by oxidation of N-aminophthalimide (4) with lead tetra-acetate in dry dichloromethane at -50°, with 3-N-3',5'-di-O-tribenzoyl-5-vinyl-2'-deoxyuridine (1a) afforded 2-[1'-(2'-deoxy-β-D-ribofuranosyl)]-7-(1-phthalimido)-4-N-3',5'-di-O-tribenzoyl-6-vinyl-2,4,7-triazabicyclo-[4.1.0]heptan-3,5-dione (5) in 42% yield as illustrated in Scheme 1. The reaction of 3 with 1a was regiospecific since no product arising from aziridination of the 5-vinyl substituent of 1a was obtained. It appears that the 5-vinyl substituent present in 1a is essential since similar reactions employing 3',5'-di-O-acetyl-3-N-benzoyl-2'-deoxyuridine possessing either a C-5 hydrogen or C-5 methyl substituent resulted in recovery of the parent unreacted 2'-deoxyuridine.

The structure of 2-[1'-(2'-deoxy-β-D-ribofuranosyl)]-7-(1-phthalimido)-4-N-3',5'-di-O-tribenzoyl-6-vinyl-2,4,7-triaza-bicyclo[4.1.0]heptan-3,5-dione (5) was confirmed using ¹H nmr and ¹³C nmr experiments. Selective irradiation of the

The mechanism by which 3 aziridinates the 5,6-olefinic bond of 1a may resemble the mechanism for epoxidation of olefins by peracids as illustrated below in Scheme 2 [5].

Scheme 2

$$Bz - N$$

$$O X$$

Removal of the phthalimido group by cleavage of the N-N bond in 5 was attempted by treatment with caesium fluoride in dimethylformamide or tetra-n-butylammonium fluoride in tetrahydrofuran at 25°. Both reactions were unsuccessful since none of the desired product could be isolated from the many products formed, which is likely due to the lability of the aziridine ring.

EXPERIMENTAL

Nuclear magnetic resonance spectra (¹H nmr, ¹³C nmr) were determined for solutions in deuteriochloroform with TMS as an internal standard (¹H nmr) with a Bruker AM-300 spectrometer. Positive ion fast atom bombardment (FAB) mass spectra were obtained using an AEI MS-9 mass spectrometer. Silica gel column chromatography was carried out using Merck 7734 silica gel (100-200 μ partical size). Dichloromethane was distilled from calcium

hydride prior to use. 3-N-3',5'-Di-O-tribenzoyl-5-vinyl-2'-deoxy-uridine (1a) was prepared according to the literature procedure [1].

2-[1'-(2'-Deoxy-β-D-ribofuranosyl)]-7-(1-phthalimido)-4-N-3',5'-di-O-tribenzoyl-6-vinyl-2,4,7-triazabicyclo[4.1.0]heptan-3,5-dione (5).

Lead tetra-acetate (50 mg, 0.1 mmole) was added to a suspension of N-aminophthalimide (16 mg, 0.1 mmole) in dry dichloromethane (5 ml) at -50° and the mixture was stirred for 15 minutes. 3-N-3'.5'-Di-O-tribenzovl-5-vinyl-2'-deoxyuridine (56 mg, 0.1 mmole) was then added with stirring and the reaction mixture was allowed to warm to 25°. The insoluble material was filtered off and the filtrate was washed successively with saturated aqueous sodium hydrogen carbonate (5 ml) and water (2 x 5 ml). The solution was dried (sodium sulfate) and the solvent was removed in vacuo to give a residue which was purified by elution from a silica gel column using ethyl acetate-hexane (30:70, v/v) as eluent to yield 5 as a viscous oil (30 mg, 42%); ¹H nmr (deuteriochloroform): δ 2.54 (dd, $J_{gem} = 14.2$, $J_{1',2''} = 4.8$ Hz, 1H, H-2"), 3.35 (ddd, $J_{gem} = 14.2$, $J_{1',2'} = 8.7$, $J_{2',3'} = 6.0$ Hz, 1H, H-2'), 4.58 (ddd, $J_{4',5'} = 7.2$, $J_{4',5''} = 4.5$, $J_{3',4'} = 2.1$ Hz, 1H, H-4'), 4.76 (dd, $J_{gem} = 11.4, J_{4',5''} = 4.5 \text{ Hz}, 1H, H-5''), 5.22 \text{ (dd, } J_{gem} = 11.4, J_{4',5''}$ $= 7.2 \text{ Hz}, 1\text{H}, \text{H-5'}, 5.56 \text{ (d, } J_{cis} = 10.3 \text{ Hz}, 1\text{H}, \text{CH} = \text{C}H\text{H'}), 5.60$ $(d, J_{trans} = 18.2 \text{ Hz}, 1H, CH = CHH'), 5.76 (dd, J_{2',3'} = 6.0, J_{3',4'} =$ 2.1 Hz, 1H, H-3'), 6.2 (s, 1H, H-1), 6.40 (dd, $J_{trans} = 18.2$, $J_{cis} =$ 10.3 Hz, 1H, $-CH = CH_2$), 6.55 (dd, $J_{1',2'} = 8.7$, $J_{1',2''} = 4.8$ Hz, 1H, H-1'), 7.36-8.20 (m, 19H, aryl hydrogens); ¹³C nmr (deuteriochloroform): δ 34.82 (C-2'), 51.05 (C-6), 52.91 (C-1), 64.11 (C-5'), 74.76 (C-3'), 82.31 (C-4'), 85.35 (C-1'), 122.57 ($CH = CH_2$), 129.53 $(CH = CH_2)$, 148.73 (C-3 C = 0), 164.04 (C-5 C = 0), 164.72 (phthalimido C=0), 165.79, 166.34 and 167.33 (two PhCO₂, PhCON); positive ion FAB ms: m/z 727.14 (M + 1, 0.18%).

Anal. Calcd. for C₄₀H₃₀N₄O₁₀: C, 66.10; H, 4.16; N, 7.71. Found: C. 65.80; H, 4.38; N, 7.36.

Acknowledgments.

We are grateful to the Medical Research Council of Canada (Grant No. MA-5965) for financial support of this work, and to the Pharmaceutical Manufacturers Association of Canada and the Medical Research Council of Canada for the provision of a joint fellowship to one of us (R.K.).

REFERENCES AND NOTES

- [1] M. Tandon, L. I. Wiebe and E. E. Knaus, Can. J. Chem., 67, 1484 (1989).
- [2] S. Senda, T. Asao and K. Maruhashi, J. Am. Chem. Soc., 99, 7358 (1977).
- [3] R. S. Atkinson, M. J. Grimshire and B. J. Kelley, *Tetrahedron*, 45, 2875 (1989).
 - [4] A. Bax, J. Magn. Reson., 57, 314 (1984).
- [5] R. S. Atkinson and B. J. Kelley, J. Chem. Soc., Perkin Trans. I, 1627 (1989), and references cited therein.